Added a popular tags feature, greatly cleaned up code, commented spots

This commit is contained in:
Amber McCloughan 2025-12-30 18:40:24 -05:00
parent 4fbb99a3f6
commit 9a8144af68
4 changed files with 83 additions and 58 deletions

View File

@ -1,10 +1,9 @@
# tumblr-stats
## Usage
```
usage: tumblr_stats.py [-h] -b BLOG [-t TAGS [TAGS ...]] OPERATION
usage: tumblr_stats.py [-h] -b BLOG [-t TAGS [TAGS ...]] OPERATION [OPERATION ...]
Use pytumblr to calculate stats after setting these enviroment variables: $TUMBLR_CONSUMER_KEY, $TUMBLR_CONSUMER_SECRET,
$TUMBLR_OAUTH_TOKEN, and $TUMBLR_OAUTH_SECRET
Use pytumblr to calculate stats after setting these enviroment variables: $TUMBLR_CONSUMER_KEY, $TUMBLR_CONSUMER_SECRET, $TUMBLR_OAUTH_TOKEN, and $TUMBLR_OAUTH_SECRET
positional arguments:
OPERATION operation used to calculate stats

View File

@ -16,26 +16,5 @@ class BuildTotalStatsModel(StatsModel):
# Posts ranked from most popular to least popular by notes within each month and year.
top_post_urls_by_month_and_year: Dict[str, List[str]] = field(init=False)
# Tags ranked from most popular to least popular by notes.
most_popular_tags: List[Dict[str, Any]] = field(default_factory=list)
def __post_init__(self):
super().__post_init__()
self.most_popular_tags = self.determine_most_popular_tags()
def determine_most_popular_tags(self) -> List[Dict[str, Any]]:
tag_dict: Dict[str, Any] = {}
for post_key in self.original_post_map:
post = self.original_post_map[post_key]
tags = post['tags']
for tag in tags:
if tag in tag_dict:
tag_dict[tag] = {
'tag': tag, 'note_count': tag_dict[tag] + post['note_count']}
else:
tag_dict[tag] = {'tag': tag,
'note_count': post['note_count']}
tag_list = sorted(list(tag_dict.values()),
key=itemgetter('note_count'), reverse=True)
return tag_list
super().__post_init__()

View File

@ -1,5 +1,7 @@
from collections import defaultdict
from dataclasses import dataclass, field
from datetime import datetime
from operator import itemgetter
from typing import Any, Dict, List
@ -34,11 +36,15 @@ class StatsModel:
total_original_post_notes_by_month_and_year: Dict[str, int] = field(
init=False)
# Tags ranked from most popular to least popular by notes.
most_popular_tags: List[Dict[str, Any]] = field(init=False)
def __post_init__(self):
self.total_posts = self.calculate_total_posts()
self.total_original_posts = self.calculate_total_original_posts()
self.total_original_post_notes = self.calculate_total_original_post_notes()
self.total_original_post_notes_by_month_and_year = self.calculate_total_original_post_notes_by_month_and_year()
self.most_popular_tags = self.determine_most_popular_tags()
def calculate_total_posts(self) -> int:
return len(self.original_post_map) + len(self.unoriginal_post_map)
@ -65,3 +71,27 @@ class StatsModel:
else:
date_map[post_date_key] = post['note_count']
return date_map
def determine_most_popular_tags(self) -> List[Dict[str, Any]]:
tag_dict: Dict[str, Any] = {}
tag_dict = defaultdict(lambda : {'note_count': 0,
'post_count': 0},
tag_dict)
for post_key in self.original_post_map:
post = self.original_post_map[post_key]
tags = post['tags']
for tag in tags:
sts = tag_dict[tag]
sts['tag'] = tag
sts['post_count'] += 1
sts['note_count'] += post['note_count']
for tag in tag_dict:
sts = tag_dict[tag]
post_count = sts['post_count']
note_count = sts['note_count']
sts['notes_to_posts_ratio'] = note_count / post_count
tag_list = sorted(list(tag_dict.values()), key=itemgetter('note_count'),
reverse=True)
return tag_list

View File

@ -2,7 +2,6 @@
import argparse
import csv
from dataclasses import asdict
from datetime import datetime
import json
import os
import sys
@ -22,14 +21,17 @@ def get_args() -> Dict[str, Any]:
description='Use pytumblr to calculate stats after setting these enviroment variables: '
+ '$TUMBLR_CONSUMER_KEY, $TUMBLR_CONSUMER_SECRET, $TUMBLR_OAUTH_TOKEN, and $TUMBLR_OAUTH_SECRET',
epilog='— Be gay and do crime')
parser.add_argument('operation', type=str, metavar='OPERATION', choices=['build_tag_stats'],
parser.add_argument('operation', type=str, nargs = '+',
metavar='OPERATION', choices=['build_tag_stats'],
help="operation used to calculate stats")
parser.add_argument('-b', '--blog', type=str, required=True,
help='blog name for which to calculate stats')
parser.add_argument('-t', '--tags', type=str, nargs='+',
help='tag(s) to focus on in status (if applicable)')
# TODO: Make 'before' work, but it actually depends on https://github.com/tumblr/pytumblr/issues/174.
# parser.add_argument('--before', type=lambda s: datetime.strptime(s, '%Y-%m-%d'),
# help='only gather posts before YYYY-MM-DD')
# TODO: Make 'after' work if they add it to pytumblr.
# parser.add_argument('--after', type=lambda s: datetime.strptime(s, '%Y-%m-%d'),
# help='only gather posts after YYYY-MM-DD')
return vars(parser.parse_args())
@ -64,12 +66,15 @@ def build_post_map_and_dumpster(client: pytumblr.TumblrRestClient, args: Dict[st
dumpster: Dict[str, Any] = {}
blog_name = args['blog']
# We populate params, starting with any tags for filtering.
params = {}
if args['tags']:
params.update({'tag': ','.join(args['tags'])})
# TODO: Make 'before' work.
# if args['before']:
# before: datetime = args['before']
# params.update({'before': int(before.timestamp())})
# TODO: Make 'after' work.
# if args['after']:
# after: datetime = args['after']
# params.update({'after': str(int(after.timestamp()))})
@ -78,20 +83,21 @@ def build_post_map_and_dumpster(client: pytumblr.TumblrRestClient, args: Dict[st
offset = 0
limit = 20
# The request loop that pulls all data from the APIs.
while offset <= total:
# Begin LOOP
# Get me some posts! 😈🍪🍪🍪
# Get me some posts via REST! 😈🍪🍪🍪
data = client.posts(f"{blog_name}.tumblr.com",
offset=offset,
limit=limit,
**params)
# Sh**t it in the head if we found no posts.
# Stop the presses if we found no posts.
if not data['posts']:
print('Stopping, as no posts were found.')
break
# Total check for the first good iteration, but always checked for sanity.
# Total init check for the first iteration, but always checked for sanity.
if total == 0:
# Let's see what's in there,
total_posts = data['total_posts']
@ -100,6 +106,7 @@ def build_post_map_and_dumpster(client: pytumblr.TumblrRestClient, args: Dict[st
print(f"I'm working with {total_posts} total posts...")
total = total_posts
# This block populates the local post_map from the raw response data.
curr_posts = data['posts']
local_post_map: Dict[str, Any] = {}
for curr_post in curr_posts:
@ -107,47 +114,50 @@ def build_post_map_and_dumpster(client: pytumblr.TumblrRestClient, args: Dict[st
if curr_key not in local_post_map:
local_post_map[curr_key] = curr_post
# This block populates the local dumpster from the raw response data.
local_dumpster = {}
filtered_local_post_map = {}
for local_key in local_post_map:
local_post = local_post_map[local_key]
# Determines whether this is an OG post.
if 'parent_post_url' not in local_post:
filtered_local_post_map[local_key] = local_post
else:
else: # If it's not an OG post, into the local dumpster.
local_dumpster[local_key] = local_post
# The sacred should we add, and if we should, DO ADD, if statement.
has_og_posts = any(post not in post_map for post in filtered_local_post_map)
# The sacred "should we add, and if we should, DO ADD" conditional statements.
has_og_posts = any(
post not in post_map for post in filtered_local_post_map)
has_not_og_posts = any(post not in dumpster for post in local_dumpster)
if has_og_posts:
post_map.update(filtered_local_post_map)
if has_not_og_posts:
dumpster.update(local_dumpster)
# The increment and status printing. Should always end the loop!
offset += limit
if offset == limit:
print('Processed first batch...')
elif offset < total:
print(f"Processed batch {offset // limit} of {total // 20}...")
else:
print(f"Processed all {total} posts")
print(f"Processed batch {offset // limit} of {(total // 20) + 1}...")
# End LOOP
# Return (og_posts, not_og_posts).
return (post_map, dumpster)
def build_tag_stats_model(client: pytumblr.TumblrRestClient, args: Dict[str, Any]) -> BuildTagStatsModel:
post_map, dumpster = build_post_map_and_dumpster(client, args)
stats_model: BuildTagStatsModel = BuildTagStatsModel(blog_name=args['blog'], original_post_map=post_map,
def build_tag_stats_model(post_map: Dict[str, Any],
dumpster: Dict[str, Any],
args: Dict[str, Any]) -> BuildTagStatsModel:
stats_model: BuildTagStatsModel = BuildTagStatsModel(blog_name=args['blog'],
original_post_map=post_map,
unoriginal_post_map=dumpster)
stats_model.tags = args['tags']
return stats_model
def build_total_stats_model(client: pytumblr.TumblrRestClient, args: Dict[str, Any]) -> BuildTotalStatsModel:
post_map, dumpster = build_post_map_and_dumpster(client, args)
stats_model: BuildTotalStatsModel = BuildTotalStatsModel(blog_name=args['blog'], original_post_map=post_map,
def build_total_stats_model(post_map: Dict[str, Any],
dumpster: Dict[str, Any],
args: Dict[str, Any]) -> BuildTotalStatsModel:
stats_model: BuildTotalStatsModel = BuildTotalStatsModel(blog_name=args['blog'],
original_post_map=post_map,
unoriginal_post_map=dumpster)
return stats_model
@ -156,32 +166,39 @@ def main() -> None:
args = get_args()
client = init_client()
stats_model = StatsModel(blog_name=args['blog'], operation='undefined',
original_post_map={}, unoriginal_post_map={})
# Get the post_map (original posts) and dumpster (not original posts).
post_map, dumpster = build_post_map_and_dumpster(args=args, client=client)
if args['operation'] == 'build_tag_stats':
stats_model = build_tag_stats_model(client, args)
elif args['operation'] == 'build_total_stats':
# Pick a stats model, which will determine output.
stats_model: StatsModel
if 'build_tag_stats' in args['operation']:
stats_model = build_tag_stats_model(post_map, dumpster, args)
if 'build_total_stats' in args['operation']:
if 'before' not in args: # or 'after' not in args:
print('You must specify a time range for build_total stats. ' +
'You\'ll otherwise request TOO MUCH DATA!')
sys.exit()
stats_model = build_total_stats_model(client, args)
stats_model = build_total_stats_model(post_map, dumpster, args)
# Write the chosen model as JSON output.
with open('./tumblr_stats.json', 'w') as f:
json.dump(asdict(stats_model), f, indent=2, sort_keys=True)
if stats_model.original_post_map:
json.dump(asdict(stats_model), f, indent=1)
# If there were original posts, create a CSV for them.
if post_map:
with open('./tumblr_original_posts.csv', 'w', newline='') as f:
post_list: List[Dict[str, Any]] = list(
stats_model.original_post_map.values())
post_list: List[Dict[str, Any]] = list(post_map.values())
wr = csv.DictWriter(f, quoting=csv.QUOTE_ALL, extrasaction='ignore',
fieldnames=post_list[0].keys())
wr.writeheader()
wr.writerows(post_list)
else:
print('No original posts were found, so no CSV of original posts was written.')
print('No original posts were found, so a CSV of original posts was not written.')
return
# DO NOT DELETE. The main if statement.
if __name__ == '__main__':
main()
print('All done.')
sys.exit(0)